差比数列的定义
若数列$\{a_n\}$的通项形如$a_n=b_n\cdot c_n$($n\in\mathbb N^{\ast}$),其中数列$\{b_n\}$为公差为$d$的等差数列,数列$\{c_n\}$是公比$q\ne 1$的等比数列,称数列$\{a_n\}$为差比数列.
差比数列的求和方法
错位相减法
设差比数列$a_{n}=b_n\cdot c_n$,其前$n$项和为$S_{n}$,则$$\begin{array}{llll}S_{n}&=b_1\cdot c_1+&b_2\cdot c_2+b_3\cdot c_3+b_4\cdot c_4\cdots+&b_n\cdot c_n,\\qS_{n}&=&b_1\cdot c_2+b_2\cdot c_3+b_3\cdot c_4+\cdots+&b_{n-1}\cdot c_{n}+b_n\cdot c_{n+1}, \end{array}$$作差可得$$(1-q)S_n=b_1c_1+d\sum_{k=2}^{n}c_k-b_nc_{n+1}$$此时求$S_n$就转化为了求等比数列的和.这种求和方法即
$(1)$ 求$\left\{ a_{n} \right\}$的通项公式;
(2)求数列$\left\{ \dfrac{a_{n+1}}{2^{n}} \right\}$的前$n$项和$T_{n}$.
$(1)$ $a_{n}=n-1\left( n\in \mathbb{N}^{*} \right)$.
$(2)$ 因为$$\frac{a_{n+1}}{2^{n}}=\frac{n}{2^{n}},$$所以$$\begin{array}{lll}T_{n}&=1\times \left( \frac{1}{2} \right)^{1}+&2\times \left( \frac{1}{2} \right)^{2}+3\times \left( \frac{1}{2} \right)^{3}+\cdots +n\times \left( \frac{1}{2} \right)^{n}\\ \frac{1}{2}T_{n}&=&1\times \left( \frac{1}{2} \right)^{2}+2\times \left( \frac{1}{2} \right)^{3}+\cdots +(n-1)\times \left( \frac{1}{2} \right)^{n}+n\times \left( \frac{1}{2} \right)^{n+1}\end{array}$$两式相减得:$$\begin{align}\frac{1}{2}T_{n}&=\left( \frac{1}{2} \right)^{1}+\left( \frac{1}{2} \right)^{2}+\left( \frac{1}{2} \right)^{3}+\cdots +\left( \frac{1}{2} \right)^{n}-n\times \left( \frac{1}{2} \right)^{n+1}\\ &=\frac{\frac{1}{2}\times \left[ 1-\left( \frac{1}{2} \right)^{n} \right]}{1-\frac{1}{2}}-n\times \left( \frac{1}{2} \right)^{n+1}\\&=1-\left( 1+\frac{n}{2} \right)\left( \frac{1}{2} \right)^{n},\end{align}$$即$$T_{n}=2-\left( 2+n \right)\left( \frac{1}{2} \right)^{n},n\in \mathbb{N}^{*}.$$
裂项相消法
设通项为$a_n=f(n)\cdot q^n$($n\in\mathbb N^{\ast}$)的差比数列的前$n$项和为$S_n$,则考虑令$$f(n)\cdot q^n=g(n)\cdot q^n-g(n-1)\cdot q^{n-1},$$其中$g(n)$是与$f(n)$次数相同的多项式,则$$S_n=g(n)\cdot q^n-g(0),$$因此求出了$g(n)$,就求出了$S_n$.而一般我们利用待定系数法去确定多项式$g(n)$,这种求和方法称为待定裂项法.
设$a_{n}= (kn + b)\left(\frac{1}{2}\right)^{n}-[k(n-1) + b]\left(\frac{1}{2}\right)^{n-1}$,则$$n\left(\frac{1}{2}\right)^{n}=\left[(kn + b)-(2kn-2k+2b)\right]\left(\frac{1}{2}\right)^{n},$$可得:$$\begin{cases}k=-1\\b=-2\end{cases}$$因此$$S_n=2-\left( 2+n \right)\left( \frac{1}{2} \right)^{n},n\in \mathbb{N}^{*}.$$
差比数列的求和公式
根据以上求和方法可得形如$c_{n}=(an+b)\cdot q^{n-1}(q\ne 1)$的数列求和为$$S_{n}=(An+B)q^{n}+C(q\ne 1),$$其中$$\begin{cases}A=\dfrac{a}{q-1},\\[5pt] B=\dfrac{b-A}{q-1},\\[5pt] C=-B.\end{cases}$$
评论前必须登录!
立即登录 注册